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“

A Feasibility Study of Collaborative Multi-facility
Windtunnel Testing for CFD* Validation

(RTO TR-27)

Executive Summary

The Applied Vehicle Panel of the RTA established in 1997 a Working Group to study the feasibility of
collaborative, multi-facility windtunnel testing for CED Validation. CFD validation is generally appreciated as a
very important part of the development of Computational Fluid Dynamics. Dedicated, well controlled and
accurate windtunnel tests are considered as the main source of CFD validation. Windtunnels, however, all have
their own specific bias errors associated with practical constraints (like tunnel wall and model support systems)
and flow imperfections. Testing of one model in several facilities can better establish the level of uncertainty
involved in windtunnel testing. This is important too for the assessment of possible differences between CFD
and the windtunnel test.

At the start of the Working Group a limited inquiry was made (using a questionnaire that was distributed within
the CFD community) to probe the experiences with CFD validation. Half of the respondents found the situation
acceptable, with satisfactory and disappointing experiences equally divided on both sides. Most of the
respondents indicated a need for more detailed measurements. A lack of validation experiments for helicopters
was noted. '

The Working Group assessed the need for CFD validation for three different configurations: fighters, transport
aircraft and missiles. In the course of the study, helicopters were added. For all these configurations there is a
qualified need for additional CFD validation experiments:

e fighter aircraft: only useful for a representative ‘stealth-like’ configuration; this would involve the design and
manufacturing of a new generic windtunnel model; interest focuses on mixed attached/separated flows with
vortex flow involving complex measuring techniques;

e transport type aircraft: there is an interest in low speed / high lift configurations, possibly using already
existing windtunnel models like the DLR ‘ALVAST’ or the B737-100;

o missiles: there is a need for validating complex configurations although the multi-facility aspect is less
pronounced; '

o helicopters: there is a clear lack of detailed experiments in view of the flow field complexity; experience in
measuring techniques could be combined through multi-facility testing experience.

Interest is focussed on validating complex flow phenomena, involving interactions of different flow types. It is
essential to apply new, challenging measuring techniques to obtain flow field information that, up till now, has
been very limited. Also, in validation experiments, measuring uncertainties can be reduced by careful design of
the experiment. Therefore, the technical need for and cost effectiveness of multi-facility testing to reduce
possible bias effects in relation with CFD validation, is limited. This doesn’t mean that there is no need for
collaborative multi-facility windtunnel testing: ’

o From the point of view of windtunnel test techniques it is still of interest to establish bias errors between
various facilities using comparative tests with one or more simple standard models, specifically designed and
instrumented to understand the cause of possible differences. Such an exercise should be viewed in the context
of ‘quality assurance’.

e For CFD validation multi-facility testing is of interest to widen the scope and the technical depth of the
experiment. It will be cost effective to use the experience of different groups of experts for advanced
measuring techniques in a complementary manner.

For all these cases the Working Group members have made a ‘bottom-up’ inquiry within their own organisations
to find out if one or more of these programs could find support. In all cases the response was inconclusive. Cost
issues and commercial / political reasons were quoted to limit the chances for a multi-facility exercise. It is
therefore believed that such a program could only be envisaged when there is a clear top-down commitment from
the organisations involved.

*CFD: Computational Fluid Dynamics.
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Etude de faisabilité d’essais en soufflerie multisites
menés en coopération, en vue de la validation des
calculs de I’aérodynamique numérique - CFD

(RTO TR-27)

Synthése

En 1997, la commission sur la technologie appliquée aux véhicules (AVT) de la RTA, a créé un groupe de travail pour
étudier la faisabilité d’essais en soufflerie multisites menés en coopération en vue de la validation des calculs de
I’aérodynamique numérique (CFD). La validation est généralement considérée comme une étape trés importante du
développement de 1'aérodynamique numérique. Des essais en soufflerie spécialisés et rigoureux, effectués dans des
conditions bien maitrisées sont la principale source de validation du CFD. Cependant, chaque soufflerie a ses propres biais
associés a des contraintes pratiques spécifiques (comme par exemple les effets de paroi et les supports de maquette), et des
imperfections d’écoulement. Tester la méme maquette dans différentes installations permet de mieux établir le degré
@’incertitude lié aux essais en soufflerie. Cela est également important pour I’évaluation d’éventuelles différences entre les
calculs CFD et les résultats des essais en soufflerie.

Au début des travaux du groupe de travail, un sondage a été effectué (A I’aide d’un questionnaire diffusé aux spécialistes du
CFD) afin de recueillir I’expérience en matiére de validation CFD. La moitié des personnes interrogées trouvait la situation
acceptable, avec autant d’expériences satisfaisantes que de résultats décevants. La plupart d’entre elles ont évoqué le besoin
de mesures plus pointues. L’absence d’essais de validation pour les hélicoptéres a aussi été noté.

Le groupe de travail a relevé un besoin de validation CFD pour trois catégories différentes : les avions de combat, les avions
de transport et les missiles. Les hélicopteres ont été ajoutés a cette liste au cours du projet. Pour toutes ces catégories il existe
un besoin précis d’expériences de validation CFD.

¢ Les avions de combat : intéressant uniquement pour une configuration représentative du type « furtif », impliquant la
conception et la réalisation d’une nouvelle maquette générique pour essais en soufflerie ; les domaines d’intérét sont les
écoulements mixtes attachés/décollés avec écoulements tourbillonnaires faisant appel a des techniques de mesure
complexes ;

 Les avions de transport: il est intéressant d’étudier des configurations faible vitesse/portance élevée, en utilisant,
éventuellement des maquettes de soufflerie existantes, comme ’ALVAST du DLR ou le B737-100 ;

* Les missiles : il y a lieu de valider des configurations complexes, bien que 1’aspect multisites soit moins prononcé ;

¢ Les hélicoptéres : vu la complexité du champ d’écoulement, il y a une insuffisance manifeste d’expérimentation
détaillée ; I’expérience acquise en matiere de techniques de mesure pourrait &tre mise en commun par la réalisation
d’essais sur des sites multiples. ’

Le centre d’intérét commun est la validation de phénomenes d’écoulement complexes, mettant en jeu des interactions entre
différents types d’écoulements. Il est essentiel d’appliquer de nouvelles techniques de mesure ambitieuses pour obtenir les
données sur le champ d’écoulement qui ont manqué jusqu’a présent. De méme, dans les expériences de validation, les
incertitudes sur les mesures pourraient &tre réduites par une conception plus rigoureuse de I’expérience. De plus, le besoin
technique et la rentabilité des essais multisites réalisés dans 1’optique de réduire d’éventuels biais dans la validation CFD,
demeurent limités. Pourtant, cela ne veut pas dire que les essais en soufflerie multisites menés en coopération ne présentent
pas d’intérét : .
¢ Du point de vue des techniques des essais en soufflerie, il demeure intéressant de définir les biais entre différentes
installations en réalisant des essais comparatifs sur une ou deux maquettes standards simples, spécifiquement congues et
instrumentées, afin de comprendre les raisons d’éventuelles différences. Un tel exercice doit &tre vu dans le contexte de «
I’assurance qualité ».

* Les essais multisites sont intéressants pour la validation CFD, puisqu’ils permettent d’ augmenter la portée et la complexité
technique de 1’expérience. Il serait rentable de profiter de I’expérience mise en commun de différents groupes de
spécialistes en matiere de techniques de mesure avancées.

Pour tous ces cas de figure, les membres du groupe de travail ont adopté une démarche ascendante au sein de leurs propres
organisations afin d’apprécier 1'intérét qui pourrait s’exprimer pour un ou plusieurs de ces programmes. Les réponses n’ont
pas &té concluantes. Des considérations de cofits et des arguments politico-commerciaux ont été mentionnés comme facteurs
limitant les possibilités de campagnes multisites. Il semblerait donc qu’un tel programme ne peut €tre envisagé qu’en cas
d’engagement réel de la part des directions des organisations impliquées.
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1 INTRODUCTION

In 1997 the Applied Vehicle Panel (AVP) of the Research and Technology Agency (RTA) of NATO
established the Working Group WG-011 to “study the feasibility of collaborative, multi-facility
windtunnel testing for CFD Validation”. Prof. J.W. Slooff and Dr. R. Bengelink, at the time of the
initiative both members of AGARD’s Fluid Dynamics Panel (FDP), initiated this study. In the original
proposal the following justification was given:

“CFD validation is generally appreciated as a very important part of the development, into maturity,
of Computational Fluid Dynamics. Dedicated, well-controlled and accurate windtunnel tests are
considered as the main source of CFD validation. Windtunnels, however, all have their own specific
bias errors associated with flow quality, noise levels, transition tripping, wall interference, support
interference and the like. Moreover, the magnitude of such effects is, in general, not accurately known.
In this situation testing of one model in several facilities is highly desirable in order to better establish
the level of uncertainty involved in windtunnel testing. This is of particular importance for CFD
validation tests.”

The Working Group assessed the need for CFD validation for three different configurations: fighters,
transport and missiles. Also an inquiry was made (using a questionnaire that was distributed within the
CFD community) with respect to the experiences with CFD validation. As a result from this inquiry,
helicopter configurations were added to this study. For each of these configuration types the added
value and practical possibilities for collaborative multi-facility testing were discussed. Each of the
Working Group members used its own contact within the acrodynamic community to find-out if the
views of the WG members were generally supported. This report summarises the findings of the
Working Group. :

The Working Group started its activities fall 1997 in Seattle, followed by a meeting spring 1998 in
Sorrento and a final meeting fall 1998 in Amsterdam.







| 2 WINDTUNNELS AND CFD VALIDATION
21 CFD validation and multi-facility testing

| by A. El&enaar (NLR)

2.1.1 Imtroduction

Windtunnels play an essential role in aircraft design. However, due to the rapid development of
computers and numerical methods, CFD has matured to such an extent that the designer is now able to
apply CFD in the design process. With the advance of CFD, windtunnels are also used to guide and
validate the development of improved CFD methods. The requirements for "development testing" and
"CFD validation" are not identical’,

CFD simulates the flow numerically in space and time co-ordinates. At the beginning of the
development of a particular CFD code the flow physics and the related numerics are all important. In
its final stage the performance of the code for practical applications has to be assessed.

To validate a CFD code its results are compared with well-controlled experiments obtained in the
windtunnel. However, the windtunnel has its own deficiencies (like wall and support effects) and the
validation issue can be narrowed down to the question ‘how accurately does the CFD code and the
windtunnel represent the reality’ and, as a follow-up on this *how can CFD and the wmdtunnel be used
in a complementary way to improve the validity of both methods’.

2.1.2 Characteristics and requirements for CFD validation

In the present context we will restrict ourselves to the flow physics aspects of CFD validation, leaving
aside questions of numerical accuracy and geometrical representation. '

The first issue to be resolved is the question if the basic flow physics is adequately modelled. So-
called ‘building block experiments’ are of great help here: they address one physical aspect at the time
at a sufficiently large scale to allow detailed (flowfield) measurements for a (most often) relatively
simple geometry. Table 2.1-1 provides a rather comprehensive list (compiled by J.H. Fox) of ‘building
block experiments’ in order of increasing physical complexity.

In the final stages of the validation process one wants to know how well a CFD code is able to predict
aerodynamic data (e.g. lift, drag, pitching moment, loads . . .), both with a particular applications in
mind (fighters, transport type, missiles, helicopters) and with respect to complex flow physics
involved (e.g. mixtures of attached, separated or partly separated flow, flows with shock waves and
vortices, flows with unsteady phenomena . . .). Comparisons are made with results from windtunnel
experiments, normally for some characteristic flow conditions. For each of these conditions an overall
comparison is made in terms of forces and moments and pressure distributions, followed by an in-
depth analysis of details of the flow field like boundary layer development, skin friction magnitude
and direction, wake or other flow field velocity measurements. Detailed measurements are required to
assess if the relevant flow physics is well represented and/or to explain and understand differences
between CFD and experiment in the overall characteristics. However, such detailed flow
investigations usually require a special experimental set-up involving (large) models such that these
specialised measurements can be made (e.g. LDV, PIV, internal and external probes).

If differences are found they might also be contributed to deficiencies in the experimental test results.

In the design of the experiment adequate measures are to be taken to assure that there i 1s sufficient

information to assess the quality of the experimental results. In another AGARD report*

recommendations have been made with respect to wind tunnel tests for CFD validation. Some of these

recommendations are repeated here:

e establish flow sensitivities to make sure that the CFD comparison is made at a condition that is not
" very sensitive to small variations in flow conditions;




 if flow sensitivities can be expected, the CFD comparison should be done for a range of test
conditions;
® resolve a possible uncertainty in reference flow conditions from measured boundary conditions,
either
- by deriving the wall induced interference flow fields from the measured boundary conditions
(e.g. pressures or velocities near the tunnel walls; this is recommended for perforated or
slotted wall tunnels);
or
- by making the CFD comparison with the tunnel walls represented (this is recommended for
solid tunnel walls);
* use as much as possible complementary and /or redundant measuring techniques to assess possible
probe interference effects and instrument bias errors;
* minimise as much as possible differences between the calculated and the tested configuration (e.g.
by measuring model deformations, measuring the transition location, using simple geometry’s
(e.g. faired inlets), representing the model support in the calculations . . .).

These recommendations still stand today. In addition to this one can also consider to perform the
validation experiment in different facilities. Such a multi-facility experiment will greatly improve the
value of the experiment and virtually eliminate typical tunnel dependent bias errors. It should be noted
here that it is not sufficient to test in different windtunnels and to use the resulting scatter as an
‘overall measurement uncertainty’. One should rather try to understand the origins of the differences.
Some more aspects of multi-facility testing will be described in the next section.

2.1.3 CFD validation: a case for multi-facility testing?

There is some uncertainty in windtunnel test results due to various kinds of errors. It is common
practise to make a distinction between “instrument error” and “bias error”. Instrument errors can be
assessed quite accurately. In an AGARD report5 a methodology is described to quantify these errors in
a systematic way. The real problems however are the bias errors that are much more difficult to assess.
Bias errors are characterised by a systematic deviation between the measured and the ‘true’ value,
resulting from systematic instrument errors, deficiencies in model shape or ‘imperfect’ aerodynamic
origins. Typical bias errors of an aerodynamic nature are wall and support interference effects, flow
quality, transition point uncertainties, flow quality . . .

Even today bias errors limit the possibilities to obtain windtunnel results with the required high
absolute accuracy. Testing one model in different windtunnels during a development program
sometime raises more questions then can be answered. This is not a very acceptable situation. Flight
prediction is most often based on past experience using windtunnel dependent databases. This makes it
difficult to test in different windtunnels and limits the information exchange between different partners
in a project. To cope with this situation, the aircraft designer takes a pragmatic approach, involving
comparative tests in one and the same windtunnel, and the application of corrections based on past
experience from windtunnel - flight comparisons. From the point of view of windtunne] test
techniques this is even less acceptable. It is essential, if test results are to be guaranteed, to understand
the magnitude and the cause of possible bias effects. '

‘Comparative multi-facility tests are well suited to establish bias errors. AGARD has led the way here
with standard models (the well known AGARD A, B, C,Dand E models)6 that have been tested in
various wind tunnels. The results of such comparisons have not always been very satisfactory.
Problems with accuracy and the difficulty to assess the origins of certain differences, have been partly
responsible for this. However, since that time accuracyies have improved considerably whereas more
means are available to assess the origin of particular differences. Such a comparative test would still
be to-day very interesting. If such an exercise is to be made, it is essential to limit oneself to a rather
simple configuration, easily transferable, with sufficient information to establish in more detail the
origins of possible differences (fig. 2.1-1).




How do bias errors in windtunnel test results affect CFD validation? ‘Classical’ examples are
uncertainties in reference conditions, where Mach and/or incidence are adjusted in CFD calculations to
improve the agreement with the experiment. For transport type wings with shock waves close to drag
divergence, the flow is sensitive for small variations in reference conditions. The drag of transport
type configurations is sensitive to wall induced or support induced buoyancy effects, that can easily be
an order of magnitude larger then the required accuracy for the designer. Around Mach=1 wave
reflections from tunnel walls are known to be problematic. In supersonic flow, flow curvature effects
can have a significant effect on pitching moment, even amplified when control surfaces are present.
These are a few examples of bias effects that will effect CFD validation.

The simple geometry of a ‘standard’ model that would be optimal to reveal possible bias effects in a
particular windtunnel, would hardly be of interest for CFD validation. If bias errors are established in
this way for a particular tunnel it is not obvious how this information can be transferred to a CFD
validation experiment. Moreover, if the recommendations given in section 2.1.2 are followed in a CFD
validation experiment, some of the experimental uncertainties can be removed or at least be reduced. It
is also possible to perform a CFD validation experiment in different windtunnels to establish bias
errors. However, in that case an in general much more complicated model will have to be transferred
from one tunnel to another. As described in section 2.1.2, complex measuring techniques are often
used in CFD validation experiments. Specific experience with a particular technique often resides with
the tunnel staff and the applied hardware is difficult to transfer. This argument can be reversed as well.
One and the same model can be tested in different facilities such that each of these facilities uses its
own specific expertise for specialised measurements. In that case the test can be viewed as
complementary with some additional redundancy. A good illustration can be found in’ where a (large)
model was designed (taking into account the tunnel walls) such that a required pressure distribution
(corresponding to a 3-dimensional boundary layer close to and beyond separation) was realised. In that
particular example, two models of somewhat different scale were manufactured and tested in two
different windtunnels (though at the same Reynolds number) using partly redundant and partly
complementary test techniques (laser, pressure probes and hot-wires) to measure the boundary layer
and wake in detail. But one should realisé that such a comparative test requires dedicated teams that
have the opportunities to collaborate over a long period of time: it is not sufficient to do tests in two
facilities but one should also have the time to analyse and understand possible differences.

2.1.4 Final remarks

The discussion above has clarified that the requirements for ‘experimental bias error assessment’ and
‘CFD validation’ are far from identical. The assessment of bias errors requires a specifically designed
‘standard’ model enables the details of possible differences to be better understood. There is a need for
such an exercise from the point of view of an increased emphasis on quality control. Moreover,
improvements in measurements techniques and evaluation methods make it possible to deduce clear
conclusions from such a comparative test.

However, such a ‘standard’ model is hardly of interest for CFD validation. For CFD validation one is
basically interested in detailed flow field studies to understand possible discrepancies between CFD
and experiment. These studies involve expensive and very often tunnel related instrumentation. Bias
errors will of course affect the CFD comparison with experiment. They can be reduced by carefully
designing the experiment with special attention for reference values and boundary conditions. A
comparative test in different facilities is therefore of limited interest, very difficult to do and/or very
costly. However, it can have large advantages to test in different windtunnels when this enables the
application of complementary (and partly redundant) test techniques for which a particular windtunnel
team has its own specific expertise and experience. In that case the quality of the experiment might be
increased in a cost-effective way.
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Building-block studies for the development of 3-D Navier-Stokes computational codes
External, perfect-gas, transonic flows After No. 14, algorithm improvements will be minimal
Studies st::tey Un:;e:dy Comments
data
1 |Hold free stream in all 3 coordinate directions X Run free stream for extended number of time steps
2]Low speed (Blasius) boundary layer X [Compare Cd in all 3 directions
3{Inviscid Busemann bipfane (2-D) X ic shock ings and
4 }One-D Shock tube X Predict shock and contact discontinuity accurately in time
5[ Turbulent flat-plate boundary fayer X Compare in all 3 i irecti bsoni ic, and sup
6| Circular-arc bump on a plate (2-D) X G i induced ion and ion bubble size is critical)
7 I bump on itudinal cylinder X induced ion and ion bubble size is critical)
8 |Shock/oundary-layer interaction on fiat plate (2-D) X X Usually s ion and
9 Transonic 2-D airfoil (attached fiow) X Multiple angle-of-attack pare in all three di
10|Transverse circular cylinder (2-D) X X Broad range of M and Re; compare in all three directions
11 |Transonic 2-D airfoil (separated fiow) X X Investigate drag sensitivity to geometry, such as leading-edge radius
12 |Pitching 2-D airfoil X Harmonic oscillation
13|Planar mixing layer X X Convective Mach numbers from ~0 - >1; all directions
14T i ic ogive-cylinder; both high AOA and yaw X Cross-flow shocks; ion; vortices y try BCs with full 3-D at 0 yaw)
15 |Flat plate with 2-D cross-flow jet X X Separation forward of jet and reattachment on jet
1 6 [Multi-element 2-D airfoil X Shear-; Y layer i
17 [3-D Wing (attached flow) X
18 |3-D Wing (separated flow) X X Investigate separation sensitivity to geometry
19 [WingLEX at high AOA X X Track vortex shedding and strength
20 |Longitudinal cylinder with 3-D cross-flow jet X X Separation forward of jet and reattachment on jet
21 |3-D Cavity X X With and without stores in cavity. D cavity. Match d-p levels
22 |Fuselage/wingftailfiniet X X [Complex geometry
23|Full low observable aircraft X X

Table 2.1-1 List of ‘Building Block’ studies




simple cylindrical body with
ogive nose and straight rear
geometry; laid out for
combined balance and
pressure measurements

large wing area, high
sweep, wing twist for
high lift without flow
numbers; fixation
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separation at high Mach
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horizintal tail with
limited pressures,
detachable for flow
curvature effects

-
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pressure section left and
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surface pressures on
each section to evaluate
local flow angle and
Mach number
differences

straight rear sting, base
pressures to be
measured

Figure 2.1-1 Sketch of ‘standard’ model for tunnel comparisons




2.2 The results of a questionnaire
by Dr. G.L. Seibert (USAF/AFRL)

The working group developed a questionnaire that was designed to solicit responses to several
questions related to Computational Fluid Dynamics (CFD) code validation and wind tunnel testing of
various configurations. The questions were to define areas where the respondents performed their
work, with three original choices, namely fighters, transports, and missiles and a fourth, helicopters
added later due to some respondents claiming it was a neglected area.

The questionnaire is reproduced in Figure 2.2-1.

_ RTO/AGARD AVP/FDP Working Group 23
QUESTIONNAIRE FOR CFD VALIDATION

1IN WHAT AREA’S ARE YOU DEVELOPING CFD CODES FOR AIRCRAFT
DESIGN?
transport type fighters missiles

2 EXPERIMENTS USED BY YOU FOR CFD VALIDATION (< 5 years)?
O "in house" experimental results
O data from specific (restricted) collaborative programs
O data from the ’open literature’
O other (specify):

3 NAME YOUR 3 FAVOURITE EXPERIMENTS FOR CFD VALIDATION

4 HOW ARE YOUR EXPERIENCES WITH CFD VALIDATION?
satisfactory acceptable disappointing
please specify

5 WHAT VALIDATION EXPERIMENT YOU WOULD LIKE TO SEE EXECUTED:
please specify

6 ARE YOU AWARE OF THE 1994 AGARD PUBLICATION AR-303 "A
SELECTION OF TEST CASES FOR THE VALIDATION OF CFD CODES"?

no yes

7 IN CASE YOU HAVE OBTAINED THE DATA ON FLOPPY DISK FROM THIS
PUBLICATION, WHAT CASES DID YOU USE?
case numbers: :

8 HOW ARE YOUR EXPERIENCES FOR THESE CASES?
satisfactory acceptable disappointing
please specify:

9 PLEASE GIVE ANY OTHER COMMENTS

" NAME (optional):
AFFILIATION:

Figure 2.2-1 Questionnaire for CFD validation




The questionnaire was distributed widely in the US and Europe, including being made available
electronically on a web site, but was not met with an overwhelming response. In spite of the small
response (32 questionnaires returned) the demographics of the responses were that all three of the
original categories were well represented (with, respectively 23, 17 and 15 entries). Many respondents
indicated more than one area of interest, which accounts for the aggregate total being greater than the
original number of respondents. The listed three possible sources of experimental test cases for CFD
validation, (in-house results, specific collaborative programs, open literature) were equally used. The
majority (18) of the validators had acceptable experiences with CFD validation, eight found it
satisfactory and eight disappointing. A long list of favourite experiments could be made with a few top
scores. Noteworthy remarks addressed the need for helicopter code validation and the lack of dialogue
between the experimentalist and the CFD user of the data.

The results of the questionnaires were further analysed and then compiled in several ways to help
clarify the responses and perhaps indicate where the greatest needs for CFD validation exist.

For the question of what type of experiments were used for CFD validation, it was fairly evenly
divided between in-house, specific data and data from the open literature. The “Other” category
reflected on the use of theoretical solutions such as flat plates, boundary layers, oblique shocks and
shock tube data. ‘

Tnitially, the request for the three favourite experiments for validation resulted in a master list of 54
different test cases, with some of the same tests being mentioned by several respondents. Initially,

_ these were further broken down into the three categories of fighters, transports and missiles, but it
quickly became apparent that many of the test cases were so generic that a case could be made that
they would fit all the categories or they could be lumped under the heading of basic research.

Considering CFD validation experiences, most respondents had an acceptable or higher level of
comfort with their efforts, although there were many caveats to their comfort level. In general, these
had to do with 3D issues, laminar versus turbulent methods, lack of details about the test article
geometry, issues with details about the test facility, a lack of enough data from the test, and a better
understanding of unsteady flows, among others.

For the question about what validation experiment they would like to see executed, it quickly became
apparent that more complex test cases were needed as the capability of the CFD codes has developed
over the years. Specifically, there was a stated need for high lift cases, including multi-element
airfoils; unsteady tests of various configurations; detailed measurements of attached and separated
flows over a wide range of Reynolds numbers; tests that include aeroelastic effects; off-body
measurements; detailed experiments on turbulent and transitional flow and there was interest in rotary
wing flows for helicopter applications.

A significant number of respondents were not aware of the two volume set of the 1994 AGARD
Publication AR303, “A Selection of Test Cases for the Validation of CFD Codes.” ' Volume I

_discusses the CFD requirements for code validation, the requirements for experiments for CFD
validation, introduces the data and then gives summaries of the test cases. Volume II presents, in
detail, 39 experiments in various categories and configurations with, theoretically, enough information
to validate a code. Included in Volume II is a procedure for obtaining and using floppy disks with the
complete set of data from all the tests. Of those respondents who were familiar with the report, only a
few reported that they had obtained the floppy disks and their experiences were mixed. Unfortunately,
they did not explain in detail the basis for their comments so it is not clear as to what was acceptable
data and what was not.

The general comments re-emphasised the need for more tests involving unsteady flows, 3D flows and,
generally, more complex flows. It was also noted that for true validation testing, a CFD specialist
should be involved with the project team from the beginning.
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A further review of the questionnaire responses was done to classify them more carefully with respect

to the usage of AGARD AR 303 and to characterise the reported experiments more closely within the
three categories, namely fighters, transports and missiles. Additionally, since many of the responses
were more generic, a fourth category, basic research was added.

An important feature of the referenced experiments is the date they were conducted, since it is
valuable to know the state-of-the-art of computational fluid dynamics when the experiment occurred.
As the science of CFD has matured, the demands on data have become more exacting, which limits to
some extent the usefulness of older data.

In the case of fighters, there were only two specific references that were clearly in that category and
these did not lend themselves to further analysis. This was also the case for missiles and for the most
part, the tests that were more identifiable as basic research. As a result, it was determined not to create
a chart for the dating of the referenced material in those three areas, therefore only the one chart was
created which includes some aspects of the other areas.

Table 2.2-1 refers to the actual dates of the aircraft type tests done that were reported by the _
respondents and extracted from the questionnaires. The dates as listed are as close to the actual dates
as could be determined from among the questionnaires, the AGARD reports and from discussions with
members of the working group. From the table it can be seen that the tests reported cover the period
from the 70’s to the middle 90’s. Only a few are actually in the AGARD reports previously mentioned
in the original questionnaire. Clearly, the age of the test was not the determining factor in its use by
the modern CFD researcher. What was not asked in the questionnaire was what was the defining
reason for using that particular test case for the validation computation. This is an area for further
review and discussion.

References:

1. A selection of Experimental Test Cases for the Validation of CFD Codes. AGARD-AR-303 Vol I
and Il

Table 2.2-1 Referenced Generic Test Cases in Returned Questionnaires

No Experiment Date Source
1 | 2D Airfoils in Transonic Flow (NACA 0012) 1970’s
2 |RAE 2822 1970’s AR 138
3 | Wing on a wall ONERA M-6 1970’s AR 303
4 12D Airfoil with high lift devices: NLR 7301 with flap - 1975 AR 303
5 | 2D Airfoil with high lift devices: Garteur A-310 High Lift ~1980

Experiment

6 [ 2D RAE 5225 Airfoil 1980’s
7 | International Vortex Flow Experiment 1980’s AR 303
8 |DLR F4 Wing/Body 1980’s AR 303
9 | Wing on a Wall: Wing C 1980’s AR 255
10 | AS-28G Wing/Body/Pylon/Nacelle configuration ~1985 -
11 | DLR F-5 Wing 1985
12 | Garteur European Shear Flow Experiment 1990
13 | ONERA A-340 Wing-Body Tail Exp. 1990’s
14 | Multi-Element A-320 Profile :
15 | NLR 7702 TE-study 1990’s AR 303
16 | ELAC Delta Wing 1995
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3. NEEDS AND POSSIBILITIES FOR CFD VALIDATION THROUGH
MULTIFACILITY COLLABORATIVE WINDTUNNEL TESTING

3.1 Fighters
by Dr. J.L. Fulker (DERA) and Dr. J.H. Fox ( Sverdrup Inc.)
3.1.1 Present difficulties in obtaining test cases

Typically, CFD developers and designers focus on different validation issues. Code developers are
comfortable with a mix of component (building block) test cases from various sources such as AR-
303", unpublished proprietary experiments, and (usually restricted) experiments run at the various
national laboratories. However, designers desire CFD validation using test cases based on modern
fighter configurations. ' ’

All freely available test cases are of configurations representative of early generations of design"™.
Those designs sought optimum aerodynamic performance. But designs of current and future
configurations for fighter aircraft are driven by other considerations, such as minimal radar cross-
section and low IR signature. Thus, new configurations are radically different from past designs. They
exhibit aligned aero surfaces, low profiles, faceted surface contours, reaction-jet control, and
submerged engine inlets and exhaust nozzles. Since designers require CFD validation data from
specific configurations that are closely related to those on which they are working, the currently
available test cases are woefully inadequate.

If a multi-national test case could be agreed to, it would allow CFD validation for the design
community to be put on a firmer footing. A major stumbling block here is the availability of a suitable
model. It is conceivable that one group could be funded to design a generic model. However, if an
airframe company were contracted, they probably would not include their latest technology. Another
possibility is that an RTA/AVT study group could carry out the design and manufacture of a suitable
windtunnel model. But that could be accomplished only with great difficulty, because of RTA’s
having little experience in this area. But even if a windtunnel model were available for a modern
configuration, it is doubtful that one configuration would exercise all the desired physics needed for
validation. So, the best outcome would be a suitable set of generic models becoming available from a
government-sponsored programme. Until this occurs, the design community is dependent on geometry
and data released by manufacturers (with the concurrence of the nation’s defence establishment) on
their latest models when they deem it safe to do so. But data released by manufacturers, though
welcomed, and despite a lot of experimental effort, tend to be very limited. The data tend to be
restricted to overall forces and pressures on lifting surfaces, with little or no flow visualisation or flow-
field measurements. This is usually the result of a need to reduce the cost of testing. But it could also
be the result of the fact that the manufacturers’ flow physics experiments are done privately and go
unpublished. '

3.1.2 Need for comprehensive multi-facility experiments

- In spite of the aforementioned difficulties, there still exists a need for new experiments, however they
are obtained. And these experiments must include more than the usual surface pressures and force and
moment characteristics, for these are clearly insufficient for validating new CFD codes. Further details
of the flow should be available in order to show that the code is modelling the flow correctly.

Along with the conventional data, additional data that should be available is as follows:

e More detailed surface pressure measurements, especially in difficult areas such as corner flows
and tip flows

e Detailed off-surface flow measurements of at least all three velocity components along with some
form of visualisation of flow-field features, so that one could readily determine:
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e path, strength, and lateral extent of major vortices
e details of induced separation and reattachment zones
e wake properties from all configuration components.

The desirability of making this array of measurements leads naturally to multi-facility experiments
using more than one model. However, the use of expensive and complex test techniques may be better
suited to certain facilities. By splitting the load and cost across at least two facilities with the required
test techniques, it is much more likely that a full data set encompassing the desired measurements
would be obtained.

3.1.3 Potential test cases

Although there is a clearly defined case for conducting a multi-facility CFD validation experiment, it
is conspicuous that there are political and proprietary barriers to obtaining a suitable model for testing
within a multi-national environment. Therefore it can only be concluded that for the foreseeable future
testing of a set of configurations of this kind is out of the question. However, the possibility arises of
conducting, complex, building block experiments to obtain, at least, some of the required information
and this needs to be explored further within the International community.
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Figure 3.1-1 Generic Modern Fighter Configuration
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3.2  Transport type aircraft
by Dr. G. Redeker (DLR) and Dr. A. Amendola (CIRA)
3.2.1 Introduction

For civil transport two types of aircraft configurations are of interest:

e The transonic transport aircraft in various sizes with cruise Mach numbers 0.75<M<0.85 equipped
with turbofan engines, and

e The propeller driven aircraft at moderate flight velocities as a small Regio-Liner.

For military application future transport aircraft configurations are under discussions which are also

propeller driven. :

Three types of validation experiments can be derived from the aircraft configurations under
consideration as candidates:

e Transonic transport aircraft in cruise flight condition,

e Transonic transport aircraft in high lift condition, and

e Propeller driven aircraft at moderate flight velocities.

For the cruise flight condition there seems to be no need for a further validation experiment. This is to
a large extent covered by running programs in Europe under the auspices of GARTEUR ( a co-
operation between among others the aeronautical research institutes in Europe) and more specifically
in the action group AD(AG-28) “Transonic wing/body code validation experiment”. For the aspects of
engine/wing integration the BRITE EURAM programs ENIFAIR and AIRDATA as spensored by the
European Union (EU) are to be mentioned. The needs for a further validation experiment for propeller
driven aircraft will be partly covered by experiments in execution in the APIAN program of
BRITE/EURAM. As comparable programmes for the transonic transport in high-lift conditions are
missing at present', this configuration was selected as a potential candidate.

3.2.2 Review of available cases for a high-lift configuration

For this type of configuration the following test cases have been found in literature:

e ALVAST-Model measurements; results gained in DLR programmes, DLR/NLR cooperative
programmes and in the EU-programmes DUPRIN V/II and ENIFAIR. Not all results are available.

e B 737-100-Model measurements; results gained by NASA in the TSRV-programme. Results are
not open, except published examples.

The ALVAST-model owned by DLR' is a transport type aircraft in high-lift configuration, Fig. 3.2-1.
The model is built up by a high-lift wing with slats and flaps, pylons, model engines and a fuselage. If
can be used as complete or as a half model. Engine simulators of different kinds have been used and
exist: Throughflow nacelles (TFN), TPS engine simulators of various bypass ratios (TF, VHBR,
UHBR). The model is'equipped with nine pressure stations on the wing including taps on slats and
flaps and several rows of pressure taps on the fuselage. Measurements of surface pressures on wing
and fuselage as well as aerodynamic forces and pitching moments have been performed. No further
flow details have been measured.

The B 737-100-model, owned by NASA 2 is the wind tunnel model of a complete B 737-100 research
aircraft flown in the NASA TSRV-programme. The wind tunnel model is shown in Fig. 3.2-2. The
configuration consists of high-lift wing, pylon, throughflow nacelle, fuselage and empennage. Wing
surface pressure at 7 spanwise stations including slats and flaps have been measured and forces and
moments. No further details have been investigated.

Both cases exhibit further detailed information on flow field data needed for CFD-validation purposes.

!in the 5th Frame Work Programme high lift proposals might be included
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3.2.3 Needs for new multifacility experiments

From the viewpoint of CFD-validation for high-lift configurations new validation experiments are

highly desirable. Surface pressures, force and moment coefficients are not sufficient for validating new

flow solver codes. Further details of the flow should be available in order to prove if the code is

modelling the flow correctly.

Besides the already existing data of

- force and moment coefficients

- surface pressures,

the following data should be available

- velocity profiles in the boundary layer of different wing elements

- shear stress of the flow for turbulence modelling

- details of separation zones on wing elements (on surfaces or/and on sharp edges like slat lower
surface and flaps housing)

- wake of wing including vortex paths of wing tips and flap side edges

Multifacility experiments are necessary due to the requirement of expensive and complex test
techniques as PIV and PSP or automatically controlled probe measurements. Splitting the load on
several or at least two wind tunnels it seems to be easier to get the complete set of data.

A further problem could be solved by multifacility wind tunnel testing. The problem of wind tunnel
wall interference and the sting correction problem can be tackled easier if there are data sets of
different wind tunnels available.

3.2.4 Candidate test cases

It is proposed to use either the ALVAST-model or the B 737-100-model for the new validation
experiments. Both models exist in a high-lift configuration and are about of equal size.
The ALVAST-model has the advantage that it could be made available for new tests, whereas the
situation for the B 737-100-model is unclear at the moment.
On contrary the B 737-100-model has the advantage that flight test data are available which — if
released — could also be used for code validation.
The following flow physics should be studied:
boundary layer development on various wing elements; confluent boundary layers
influence of transition fixing on high-lift development :
separatlon zones on wing elements; especially trailing edge separation on the flaps and separation
zones in the slat cove and in the flap housing :
flow fields in the gap between the wing elements
wake development and vortex formation from wing tips and flap side edges
Advanced measurement techniques have to be applied in order to get the necessary information. It is
envisaged to use:
PSP-technique for a complete survey of surface pressure
PIV-technique to get velocity profiles in the boundary layers and in the separation zones
PIV-technique for wake measurements and determination of vortex locations

Candidate facilities for the tests are the DNW on the European side and the NASA LRC 14 ft x 22 ft
wind tunnel on the US side. Both models have already been tested in their respective wind tunnel.

References:
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CEAS European Forum Wind Tunnels and Wind Tunnel Test Techniques Cambridge 1997,
pp. 13.1t0 13.14

2. D.C. Edge, J. N. Perkins: Three-dimensional Aerodynamic Analysis of a Subsonic Transport
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Figure 3.2-1 ALVAST wing/body configuration in high-lift condition
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5 Flush Pressure Taps
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Figure 3.2-2 Wind tunnel model of B737-100 in high-lift condition®




33 Missiles
by Dr. M. Khalid (NRC/IAR) and V. Schmitt (ONERA)
3.3.1 Introduction

As part of a feasibility exercise, a number of experimental test cases have been retrieved from the
AGARD Report 303 ' and other literature sources to assess the suitability of the experimental results
for CED code validation. The intention is to determine from these studies the type and detail of a
future wind tunnel experiment, which will satisfactorily address the requirements of a comprehensive
code validation exercise. Arriving at an appropriate missile configuration, which will challenge the
scope of modern CFD codes in areas of multi-blocking, multi and adaptive gridding for viscous
resolutions as well as testing the accuracy of turbulence models in separated flows would be another
dimension of the same task.

3.3.2 A Survey of Existing Test Cases

It would be rather tedious to give a detailed blow by blow account of all the test cases existing in
literature. Instead it would be more suitable to present a brief description of the test including a
description of the configuration together with the physics of the flow and the range of test conditions
investigated. The comments would also include the suitability of the existing configuration and the
associated wind tunnel measurements as a candidate for code validation. Where appropriate the case
identification for various configurations is retained as it appears in the original reference. The first
Group A deals with blunt nosed cylindrical bodies. The ogive-cylinder type simple configurations are
treated separately in Group B. Configurations with non-circular missile bodies are contained in Group
C. Group D deals with missiles with conventional wings/control surfaces and grid fins.

Blunt Nosed Simple Missiles- Group A ,

The missile configurations in this group (see Table 3.3-1) have typically blunt nosed leading edges
followed by stubby cylindrical after bodies. These configurations at low speeds are particularly well
suited for boundary layer studies. At high Mach numbers the flow past blunt nosed shapes can give
rise to complex shock patterns and may have application in heat transfer studies. The cases identified
here contain detailed measurements of boundary layer growth, transition and separation at low speed.
The experimental data also include identification of vortices in terms of pressure measurements at
various axial stations. Other useful data for code validation include the surface pressure distribution
measurements, velocity and shear stress profiles as well as flow visualisation records. This type of
measurements would be appropriate for CED code validation in viscous regimes and examining the
accuracy of the turbulence models.

Ogive- Cylinder Missiles- Group B

There is a large variety of experimental data available for this class of missiles. Most cases considered
in this group (see Table 3.3-1) deal with supersonic flow, where the interest amongst other parameters
is also focused on various shock patterns captured using schlieren photography. For the
configurations investigated, at M=1.5 and M=2, the angle of incidence is ranged from 0 to 23°. For
lower Mach number cases of the configuration the angle of attack range is extended up to 90°. This is
an important area of research because higher angles of incidence provoke earlier separation, which is
essentially a 3D phenomenon leading to interesting vortex development along the length of the
missile. In most cases the measurements also include surface and flow field pressure measurements,
boundary layer growth measurements including separation leading to the evolution of vortices. The
data would be well suited for subsonic-supersonic surface and flow field data validation as well as the
prediction of viscous characteristics and vortex formation. :

In addition to the measurements reported1 for the ogive — cylinder type configuration there are other
experiments reported in literature for similar configuration. The Technical Cooperation Program
(TTCP) only recently carried out a code validation study of an ogive-cylinder missile tested in the
DERA, Bedford, UK tunnel’. The model tested is a 3-calibre ogive with a 10-calibre cylindrical after
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body. The data included surface and flow field pressure distribution measurements, pitot surveys,
which showed the various separation regimes including vortices development, and force balance
measurements Shock effects were also recorded through schlieren pictures. One of the present
authors® too has used thls configuration for some in house code validation.

Attraghji in references®’ presents wind tunnel results on a family of cone-cylinder bodies of revolution
at subsonic (M=0.5) and supersonic (M=1.5 and M=2) Mach numbers. The data included surface
pressure distribution as well as balance force measurements up to 25° angle of incidence. Flow
visualisation records were made at M= 3.5 and a novel method of surface shear stress evaluation was
proposed, which used an oil dot technique. The family of nose profiles investigated is described by
/fimax = 1-(1-x/LN)", where x is the axial length and LN refers to the length of the nose cone, and m=
1, 4/3,5/3 and 2 were used with a nose fineness ratio of LN/2r,x. The values of m were such selected
to give roughly equal interval of apex angle.

Non-Circular Missiles - Group C

The experimental data for this category of missile bodies would be appropriate for viscous code
validation especially for investigation of boundary layer separation and vortex prediction. The
configuration considered (see Table 3.3-1) appears to show relatively large regions of separated flow
even at small angles of attack, which eliminates the risk of flow contamination through blockage
effects'. This would provide a meaningful challenge for the CFD codes to predict separated flow
regions on a suitably defined simple configuration. Other useful data for code validation include
surface pressure measurement and integrated forces.

Missiles with Wings/Canards/Control Surfaces and Grid Fins- Group D
There is large variety of missiles, which can qualify to be included in this group. In most cases the
additional surfaces are attached to the missile body for providing better stability and control through
the flight trajectory envelopes. Usually such demands are placed when the missile is accurately guided
towards a given target or has to attain a certain range within a prescribed trajectory. For example there
are missiles supporting only control fins, or control fins with wings for generating higher lift albeit
with some additional drag penalties. Some missiles are equ1pped with canards for enhanced
performance in pitch.
The grid fins are some of the novel and latest control surface devices which if appropriately designed
could produce better lift and roll performance in comparison to the planar surface control devices. An
example is given in ®. Their shorter spanwise dimension relative to the planar fin and ‘honey comb’
structure enable them to withstand relatively higher bending and twisting moments. They do however
impose a severe penalty in terms of the drag, which too may not always be such an unattractive feature
when the intent is to decelerate a store towards a target when it is released from a fast moving
platform.
Within same requlrements of accurate trajectory performance, sometimes a missile is equipped with a
capability of lateral thrust”®. This additional vectored thrust is obtained through a high-speed jet
nozzle installed at a strategic location along the length of the missile. The intensity of the jet flow and
its vector angle can provide fine trajectory adjustments for the path alignment.
Another type of missiles, which merits attentlon is the missile with intakes. Different types and
number of intake installations are given in ° which provides a discussion on the importance of intakes
for certain design of missiles. The number and design of the intakes takes into account the following
factors:
- internal performance as thrust and specific impulse
- external aerodynamic characteristics as drag and lift-to-drag ratio
- operational constraints such as overall dimensions, which must also account of store carriage and
radar signatures.
Some basic aerodynamic performance is also affected by the intakes. The lift is usually increased
mainly because of the length of the intake nacelle which will also change the center of pressure. The
drag too is increased by as much as 38 % of the total drag for a four axisymmetnc intake 1nstallat10n at
M=2.0.
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3.3.3 Recommendations for Future Tests

A future wind tunnel test must be defined with an aim to investigate all the important flow
complexities known to exist in flow fields past missile type configurations. Once these flow
complexities are correctly quantified and measured, they would then present the appropriate challenge
to the CFD practitioners to simulate them in a comprehensive numerical exercise. The flow field
characteristics, which are of primary interest to the missile designers, include:

Boundary layer effects including separation and the evolution of vortices.
Angle of attack effects including transition studies.

Plume effects at different angles of attack

Interference effects between missile bodies/wings/control surfaces.
Lateral jet effects on the missile flow field.

Air intake design and flow field studies.

Non-circular geometries for missile bodies.

Any configuration selected for wind tunnel testing and subsequent CFD code validation exercise,
which attempts to encompass all these attributes, might become unacceptably sophisticated in form
and prohibitively expensive for numerical simulation. It might then be an appropriate recourse to
select a missile configuration, which may not address all the issues in question, but would provide the
basis for testing all the critical methodologies of a CFD code.

Towards that end, a missile such as Aerospatiale’s ‘ASTER’® would be quite appropriate for such a

study. Because this configuration is for obvious reasons not available one may resort to generic

models. Three candidate configurations for multi-facility testing are shown in Figures 3.3-1 to 3.3-3.

These models exist or could be easily manufactured and would represent fairly standard cases for

future references. Additional information on the two latter configurations may be obtained from 10,

As mentioned earlier the wind tunnel tests should include:

- force and moment measurements by balances ;

- surface pressure measurements in both axial (wings) and azimuthal directions (fuselage) ;

- flow visualisation records to study shock effects ;

- velocity profile and/or flowfield measurements at strategic axial locations, especially with an aim
to trace the development of vortices. This data would also be used for transition studies and
separation at higher angles of attack.

The wind tunnel tests could be conducted in any of the following tunnels:

- ONERA FR Wind Tunnels ;

-  DERA UK Tunnels ;

- NASA, AEDC, Boeing US Tunnels;

- IAR/NCR CA High Reynolds Number Wind Tunnel.

- DNW (GE/NL) windtunnels

The proposed configurations will provide a challenge in multi-block mesh topologies and multi
gridding for efficient running. The verification of boundary layer properties correctly would require
the implementations of finer grids or appropriate grid adaptation to resolve the sub scale viscous
flows. Being able to predict the separated and/or vortical flows at higher angles of attack would -
necessitate the implementation of higher order turbulence models.

3.34 Conclusion

The study shows a wide variety of missile configurations, which have been tested in various facilities
throughout the world. Only a handful of the cases were selected for the present investigation.

The measurements have ranged in Mach numbers from subsonic, transonic to supersonic flow
conditions. In most cases the investigations have involved surface pressure and/or balance force
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measurements. The flow field data in viscous and / or inviscid regimes is not as abundant. The depth
and quality of data collected seems to decrease as the sophistication of the missile configuration
increases.

Occasionally the tests in tunnels have been reported without any clear statement about the accuracy of
the measurements including correction aspects. If it is not possible to complete the existing
information this would make the prospect of meaningful CFD code validation somewhat questionable.
Only in a few cases implying multi-facility testing have been mentioned. In order to delete this lack at
least 3 missile configurations have been identified as possible candidates for future wind tunnel
experiments. However, the justification for multi-facility testing has to be substantiated.
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Table 3.3-1 Selecti(_)n of Test Cases from Reference 1

Group A

Prolate spheroid
Test case C2 [1]

M =0.16, 0.13, 0.23
o=10° and 30° :
R/d =7.7X10°%, 6.5X10°, 43X10°

3mX 3m Low-Speed (NWG)
wind tunnel at DLR Géttingen
4.5m X 3.5m F1 wind tunnel at

21

ONERA Fauga-Mauzac
Ellipsoid-Cylinder Model V=50 m/s 1.8m X 1.4 m F2 low speed wind
Test case C4 [1] 0=-20° to 30° tunnel at the ONERA Fauga-
R =5.6X10° Mauzac Centre. The tunnel has
Based on body length solid walls.
Group B
Power Law Nose Circular M=1J5, 0.6mX0.6m (Solid Walls) TMK
Body 23°< <8 wind tunnel at DLR K6In-Porz
Test case C1[1] R/d = 12X 10°
Ogive-Cylinder missile body (M =2. 0.3m X 0.3m ONERA S5CH
Test case C5 [1] o= 5°to 20° (Solid Walls) Tunnel
R/D =0.16X10°
Ogive Nosed Slender Body | V=0.1m/s to 60m/s 3m X 3 m Low-Speed open jet
Test case C3 [1] 0=-5° and 90° (NWG) wind tunnel at DLR
R/d =0.005X10° to 0.765X10° Géttingen
3.25m X 2.8 m Low-Speed
(NWB) open jet wind tunnel at
DLR Braunschweig
Group C
Non-Circular missile body M=04,09,2.,45 0.76 m X 1.75 m ONERA S2MA
Test case C6 [1] o=0° 10° 20° perforated wall tunnel, with2.9%

R/D =12.5X10° to 20.5X10°

open area ratio; sub, super and
transonic conditions -

0.8m X 0.76 ONERA S3MA solid
wall tunnel- supersonic flow
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Figure 3.3-1 Generic missile configuration used at ONERA
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Figure 3.3-2 Air-to-air missile configuration used in validation process

Figure 3.3-3 Non-circular cross section missile with wings and fins
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34 CFD code validation for rotorcraft flow field analysis
by Dr. A. Amendola (CIRA) and Dr. M. Khalid (NRC/IAR)
3.4.1 Helicopter Aerodynamics: General Aspects

The flow field past a helicopter is very complex, consisting of such phenomena as unsteady rotor wake
effects, vortices and large regions of separated flows. Additionally, there are flow interactions between
main rotor and helicopter fuselage and boom, as well as flow impingement effects from helicopter
body to the tail rotor. All these flow patterns are quite intractable individually and produce a daunting
flow field picture when considered ensemble. These flow complexities are present with varying )
degrees of sophistication during different helicopter manoeuvres which may at a given time involve
one or combination of such movements as hover, climb, descent, cruise and lateral sideways motions.

Perhaps the most dominant flow features in a helicopter flow field originate from:
- rotor wake

- interaction effects between components

- flow unsteadiness

- body bluntness

- blade/vortex interaction.

When analysing the helicopter flow field, we primarily concern ourselves with the aforementioned

aerodynamic characteristics and ignore other aeroelastic, structural or inertial implications of loading
or surface deformations, the inclusion of which, would certainly increase the complexity manifold. In
passing then, we may observe that the aerodynamic study of rotorcraft flow field is one of the most -
challenging issues facing aerodynamicists from both experimental and computational points of view.

Interactional Aerodynamics

The flow interactions between different components of helicopter is of paramount importance and
need to be appropriately addressed when evaluating overall aerodynamic loads. Interactional
aerodynamics is generally classified according to the configuration elements that are involved, with
the most important being:

- main rotor/fuselage

- main rotor/tail boom

- main rotor/tail rotor

- main rotor/tail plane

The static and dynamic effects associated with these different types of interference have important
consequence on flight mechanics characteristics and handling qualities and have to be suitably
accounted for when designing feed back and control mechanisms.

At low speed, examples of important phenomena owing to flow interference include:

- vehicle pitch up during transition from hover to cruise flight

- control problems and extreme bank angles during sideward flight in and out of ground effects
- control problems during quartering flight.

Other important effects, which are prevalent over larger domains of the helicopter flight envelope
include:

- tail shake provoked by interference between hub/pylon wake and helicopter tail planes

- tail rotor noise that is heavily influenced by the main rotor wake

- dynamic stability

Flow Unsteadiness

The unsteadiness of the flow is intrinsically connected with the mechanism by which helicopter rotor
creates lift, that is a wing that rotates at relatively high speeds and carries a fixed blunt body. The
relative motion between rotating and non-rotating components of the helicopter induces primarily
unsteadiness in the flow. The complex wake emanating from the rotor also induces unsteadiness, as an
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upcoming rotor blade interacts with the wake of preceding blade, or when the hehcal rotor wake
down-washes upon the main fuselage.

Other aerodynamic interactions, which also warrant attention originate from the tail rotor which
rotates at high speeds to provide necessary stability to the helicopter. The tail rotor may be operating
partially downstream of the rotor hub and partially in regions aft of main rotor and fuselage wakes,
thereby creating a situation in which three wakes interact strongly in an extremely complex vortical
and unsteady flow field. The resulting flow field has important consequences for tail rotor
performance and aft empennage loading.

Body Bluntness

Helicopter fuselage is generally an extremely bluffed body shape, which is prone to flow separation.
The fuselage may support regions of large-scale flow separations in the fore regions of the nose even
before the canopy. This flow behaviour, together with traditional flow separations that are found in
the rear part of the fuselage or in the dog-house regions below the rotor can challenge best of the
turbulence model that CFD has to offer. It is not unusual to come across laminar flow separation in the
fore regions of the fuselage leading to the formation of a separation bubble in the nose regions of the
fuselage.

Flow separation studies are therefore an important aspect of the field around typical shapes of many
helicopters currently in operation and being designed for the future. Until recently fuselage
aeodynamics had low priority in helicopter design, which is in sharp contrast to fixed wing
aerodynamic practice, where flow separation suppression is one of the main design preoccupation for
efficient flight. In addition, flow separation studies are equally important for military helicopters
which are often flown with mission kits (emergency equipment, fuel pods, cameras, rescue equipment)
attached to the basic configuration and may be responsible for even more flow complexities and
separations.

Blade/vortex interaction (BVI)

For a helicopter rotor (main rotor) operating in certain low speed partial-power descent flight
conditions, the upflow tends to force the rotor wake (blade tip vortices) into the rotor disk plane,
causing strong blade-vortex interaction (Blade-Vortex-Interaction). In this case the unsteady loads
caused by the strong induced effects of the tip vortex during its brief but repetitive (periodic) close
encounter with the blade, generate impulsive noise. Therefore there is an interest in the aerodynamic
and aeroelasticity-structure community to study the vortex emanating from a given blade and
mechanisms installed on an approaching rotor blade to suppress or breakup the vortex. Apparently,
this can lead to alleviating blade vortex interaction and may provide some noise suppression.

3.4.2 State-of-the-art of experiment

In the following sections short descriptions of some relevant experiments suitable for validation
purposes are given. The experiments described here address the following helicopter components:
- isolated rotor

- isolated fuselage

rotor and fuselage

complete helicopter configuration

Before considering the various experiments, perhaps it would be worthwhile to reiterate that the
complexity of the flow fields makes the prospects of experimental or numerical simulation equally
challenging. In the wind-tunnel environment for proper simulation, the aerodynamic effects need to be
considered along side with the elastic and inertial behaviour of helicopter components in order to
achieve similitude in both aerodynamics and the structural dynamics of the blades. The complexity of
the flows past helicopter type of flows does not allow meaningful correction of the measured data or
even appropriate extrapolation of results from flight tests. Additional problems are caused by the
strong interference effects between the rotor wake and the wind-tunnel walls. Consequently, for exact
simulation it is somewhat more complicated, for a helicopter model to be appropriately sized for rotor
scale and Reynolds number than a fixed wing counterpart.
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Rotor
The first objective of testing an isolated rotor is to obtain accurate measurements of unsteady pressure
distributions, which in turn can be used for computing the local flow conditions and for estimating
local loads and pitching moments. This type of data is very useful from the point of view of
aerodynamic performance of the rotor and especially for validating CFD prediction methods.
In the past many interesting test experiments were devoted to the investigation of rotor acrodynamics.
The experiment carried out at the University of Maryland' was already considered a valid reference
test case.
Boeing-Vertol, US Army and NASA Ames” carried out a very extensive experimental program at
DNW wind tunnel. These tests were conducted on a fully instrumented B360 rotor scaled down to a
1/5 size. Fourteen Kulite transducers were installed on each of the 5 sections to obtain a complete
description of the pressure distributions. '
Another interesting experiment was carried out by UTRC (United Technologies Research Center)™*
and US Army with an instrumented model of the UH-60 Black Hawk helicopter rotor. The test
schedule dealt with a basic rotor as well as with a modified version having a tapered tip. The basic
rotor had 176 kulites, while the modified model was equipped with 96 transducers. The tests were also
performed at DNW both for hover conditions and then for forward flight. Under hover conditions
measurements were also carried out in the rotor wake using laser velocimetry.
In Europe, a high quality data base of simultaneously measured acoustic and blade pressures fora
hingeless helicopter mam rotor was acquired in the DNW facility as part of a cooperative research
programme HELINOISE’. This experimental study employed a 40% geometrically scaled and highly
instrumented main rotor model of the BO-105 helicopter.
Another relevant test was performed in the frame of the HELISHAPE project®. A Modular Wind-
Tunnel Model (MWM) from DLR rotor test was used to drive a rotor. The rotor was fully articulated
with modern airfoil designs. The model was completely instrumented and equipped with exchangeable
blade tips. A comprehensive set of concurrent acoustic and aerodynamic blade surface pressure data as
well as blade dynamic and performance data was measured. In addition, valuable information on the
tip-vortex geometry and blade-vortex miss distance was obtained by LLS flow visualization.

Fuselage

A certain number of experiments on isolated fuselage have been carried out both in US”® and Europe.
In particular within the framework of GARTEUR (Group for Aeronautical Research and Technology
in Europe) DLR performed a series of tests on three model helicopter fuselages with different rear
parts in a 3mx3m low speed wind tunnel in Germany’.

The models were all instrumented with pressure taps, and forces were measured with a strain gauge
balance installed inside the model. Some flow field survey was also preformed to study the effects of
different upsweep of the rear part of the fuselage. Data are available and already used for validation
purposes.

Other studies of the same type have been conducted in UK and France at ONERA-CERT"' where
again LDV measurements in the wake of the fuselage and in the boundary layer were carried out.

Rotor-Fuselage

In the AGARD-AR-303-E7"" the experimental results produced at the University of Maryland are
available for validation purposes. The specific data were obtained from a study investigating the
mutual aerodynamic interactions between a four-bladed fully articulated rotor and a helicopter like
fuselage (body), as well as between the rotor and a fixed lifting surface (wing). The objective of the
test was also to try to isolate some of the important mteractlon mechanism.

A very useful data base was acquired by the US Army"® during a test program in the NASA Langley
14fx22ft wind tunnel. Two sets of rotor were tested with rectangular blades and with tapered tip
blades at several advance ratios. The measurement were made along 12 radii just above the rotor tip
path plane with an azimuthal space of 30 degree. This allows a very detailed description of the inflow
velocities.

A realistic scaled Dauphin (365N) powered model was tested in the ONERA S2Ch wind tunne
From this model steady and unsteady pressure data on the fuselage were acquired. Also, 3D laser
velocimetry (LV) data were acquired in two vertical planes.

114
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3.43 CFD Modelling

The CFD codes for rotorcraft flow field studies are generally based on incompressible formulations of
Euler or Navier-Stokes equations. The incompressible numerical models are suitable for describing
most of the phenomena resulting from low Mach number regimes typical of helicopter flight

- envelopes. However, for modern rotors and faster helicopters, one may have to take into account blade
tip speeds well into transonic flow regimes. Thus more sophisticated computational flow models may
be required which address the compressibility effects. It is only in recent years that more rigorous
numerical models based on Euler and or Navier-Stokes methods have begun to be used extensively for
simulating helicopter flow fields
flow based panel methods such as VSAERO were used for calculating surface pressure measurements
and other loads and pitching moments. Validation of modern Euler and Navier Stokes codes which use
moving grid methods to represent the rotor would require accurate flow field and surface pressures
measurements as well as other loading and pitching moment coefficients evaluations around realistic
configurations.

131817 including complete configurations. Previously, only potential

3.44 Conclusions and Recommendations

Any future experimental and/or numerical code validation exercise must attempt to address the critical
issues that have been highlighted in the paper.

Most of the tests reported in literature are either complete load coefficients or in some case pressure
measurements recorded at various stations of the helicopter rotors. There is little evidence of flow field
measurements and/or other rotor- body interaction measurements.

It seems that a real progress in the field could be achieved if an experiment could be designed around
the following features:

using the model of a realistic configurations (Fig.3.4-1 or Existing BELL 412 or AGUSTA
models),

if one of these configurations is selected there will be existing flight and/or wind tunnel data upon
which we may be able to build a more comprehensive data base for future validations,

use of a typical standard equipment (pods, fuel tanks, emergency kits) which a basic helicopter
configuration is expected to carry as mission kits,

testing in different wind tunnels, would allow a better insight into the wall correction increments
used in different tunnels,

conducting both powered and non-powered tests to study the rotor effect,

accurate flow field measurements would improve our understanding of various interactions
between different helicopter components,

detailed flow field, pressure, load and moment evaluation to be used for CFD code validation.
Pressure sensitive paints and other advances laser velocimetry may be used for flow field and
surface pressure measurement.

an accurate uncertainty analysis of the measured data.

Other initiatives that should be mentioned are from ONERA that plans to develop a complete
helicopter model in SIMA and within the frame of the European project HELIFLOW where a lot of
data will be collected on the Bo105. The availability of such experiments should be checked.
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DISCUSSION AND CONCLUSIONS

The need for validation experiments for different types of configurations has been reviewed
extensively:

e For fighter-type configuration there appears to be a need for new CFD validation tests,
provided that a modern design with a stealth-type signature is studied. Detailed flow field
studies are required for mixed attached and separated flow conditions in combination with
shock waves and vortices. Since a representative ‘generic’ model is not available, a new
generic stealth-type configuration and the corresponding windtunnel model has to be designed
and manufactured.

e Various programs in Europe (GARTEUR, programs of the European Commission) and in the
USA (NASA sponsored programs) are already concerned with transport type configurations.
There appears to be a need for more detailed validation experiments in the low speed / high lift
regime concentrating on viscous flow effects, involving detailed flow field and boundary layer
measurements. Already existing windtunnel models that have been tested in the past can
possibly be used like the DLR ‘ALVAST’ model and the B737-100 model used in the TSTV
program. An added value for a multi-facility experiment could be obtained by concentrating
on flow field measurements that require considerable expertise.

e For missile configurations a rather large data base for validation purposes is available.
However for complex flow situations, involving various control surface combinations and
lateral jets, more validation experiments are required. The need to perform these experiments
in different facilities is less clear however.

e During the study helicopters have been added in response to suggestions made in the course of
the study. CFD is only starting to be used in the design process of helicopters in view of the
difficulty to model the very complex flow phenomena and there is a clear need for multi-
facility testing to combine expertise from different groups. Already available windtunnel
models like the Dauphin, the Bell 412 or some Agusta configurations are candidate
windtunnel models for such a validation experiment.

It was also found from responses to a questionnaire distributed by the Working Group within the
CFD community concerning the state of the art for CFD validation that half of the respondents
found the situation acceptable with satisfactory and disappointing experiences equally divided on
both sides. Most of the respondents indicated a need for more detailed measurements. It was
reported that there was a lack of validation experiments for helicopters.

For all cases complex flow phenomena, involving interactions of different flow types are an
essential part of new validation experiments; in this respect it is equally essential to apply newly
developed, challenging measuring techniques.

The Working Group was established to find out if there is a need for comparative, multi-facility
windtunnel testing for CFD validation to eliminate tunnel specific bias effects. It is found that
CFD validation experiments to-day require detailed flow field measurements for complex,
representative windtunnel models specifically designed for validation purposes. It is argued that
the technical need and cost effectiveness of multi-facility testing to reduce possible bias effects in
relation with CFD validation, is rather limited. This was a shared feeling within the Working
Group and inquiries made within the different organisations that were represented in the Working
Group, supported this view. :
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However it is still of interest to establish bias errors between various facilities using comparative

‘tests with one or more simple standard models, specifically designed and instrumented to

understand the cause of possible differences. Such an exercise should be viewed in the context of
‘quality assurance’.

Collaborative, multi-facility testing will widen the scope and the technical depth of the
experiment. It will be cost effective to use the experience of different groups of experts for
advanced measuring techniques in a complementary manner.

The Working Group members have made a ‘bottom-up’ inquiry within their own organisations to
find out if one or more of the programs mentioned above could find support. In all cases the
response was inconclusive. Cost issues and commercial / political reasons were quoted to limit the
chances for a multi-facility exercise. It is believed that such a program could only be envisaged
when there is a clear top-down commitment from the organisations involved.
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14. Abstract

Between 1997 and 1999, a Working Group on thelfeasibility of collaborative, multi-facility
windtunnel testing for the validation of Computational Fluid Dynamics Codes (CFD) has
established the following results:

Windtunnel tests are the main source of CFD validation but all have specific bias errors.
Testing of the same model in several facilities can better establish the level of uncertainty in
windtunnel tests and hence help assess possible differences between CFD and windtunnel tests.

The working group, after an initial inquiry; established the need for CFD validation for fighter
aircraft, transport type aircraft, missiles and helicopters. Effort and cost can be controlled
efficiently and would permit the improvement of CFD Codes for considerable cost saving in

future developments.
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